A CMOS Image Readout Circuit with On-Chip Defective Pixel Detection and Correction

Author:

López-Portilla Bárbaro M.ORCID,Valenzuela WladimirORCID,Zarkesh-Ha PaymanORCID,Figueroa MiguelORCID

Abstract

Images produced by CMOS sensors may contain defective pixels due to noise, manufacturing errors, or device malfunction, which must be detected and corrected at early processing stages in order to produce images that are useful to human users and image-processing or machine-vision algorithms. This paper proposes a defective pixel detection and correction algorithm and its implementation using CMOS analog circuits, which are integrated with the image sensor at the pixel and column levels. During photocurrent integration, the circuit detects defective values in parallel at each pixel using simple arithmetic operations within a neighborhood. At the image-column level, the circuit replaces the defective pixels with the median value of their neighborhood. To validate our approach, we designed a 128×128-pixel imager in a 0.35μm CMOS process, which integrates our defective-pixel detection/correction circuits and processes images at 694 frames per second, according to post-layout simulations. Operating at that frame rate, our proposed algorithm and its CMOS implementation produce better results than current state-of-the-art algorithms: it achieves a Peak Signal to Noise Ratio (PSNR) and Image Enhancement Factor (IEF) of 45 dB and 198.4, respectively, in images with 0.5% random defective pixels, and a PSNR of 44.4 dB and IEF of 194.2, respectively, in images with 1.0% random defective pixels.

Funder

Chilean National Agency for Research and Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference65 articles.

1. CMOS image sensors;Eltoukhy;IEEE Circuits Devices Mag.,2005

2. Biologically Inspired CMOS Image Sensor for Fast Motion and Polarization Detection;Sarkar;IEEE Sens. J.,2013

3. Kuroda, T. (2017). Essential Principles of Image Sensors, CRC Press.

4. Durini, D. (2020). High Performance Silicon Imaging: Fundamentals and Applications of Cmos and Ccd Sensors, Woodhead Publishing.

5. CMOS image sensors for high speed applications;Fang;Sensors,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3