Author:
Yuan Zihao,Xiao Chenyu,Liu Hao,Sun Xuejing,Zhao Guangyi,Liao Hongbin,Qian Wei,Yuan Jingkun,Lao Changshi,Wang Huajie
Abstract
Cube and tensile samples of reduced activation ferritic/martensitic steel were formed at different laser powers and scanning velocities using a selective laser melting process; the microstructural characteristics and tensile properties of the cube and tensile samples were investigated in this study. The experimental results showed that the SLMed CLF-1 samples that formed with selected laser melting were near-fully dense, and the relative density of the SLMed CLF-1 samples exceeded 99%. Meanwhile, there were numerous nano-sized spherical and needle-like precipitate dispersions distributed in the grains and boundary of the grains, and the precipitates were mainly composed of M23C6 carbide and MX carbide. The microstructure was composed of columnar grains and equiaxed grains arranged in a sequence, and the smallest average size of the grains was 15 ± 2.1 µm when measured at 320 W of power and 800 mm/s scanning velocity. In addition, the sample at 320 W of power and 800 mm/s scanning velocity exhibited higher yield strength (875 ± 6.0 MPa) and higher elongation (25.6 ± 0.8%) than that of the sample at 200 W of power, 800 mm/s scanning velocity, yield strength of 715 ± 1.5 MPa, and elongation of 22.6 ± 1.2%.
Funder
National Magnetic Confinement Fusion Science Program of China
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献