Microstructure and Mechanical Properties of P21-STS316L Functionally Graded Material Manufactured by Direct Energy Deposition 3D Print

Author:

Jo Myeongji,Kim Hyo-SeongORCID,Park Jeong Yeol,Lee Seok Goo,Kim Byung JunORCID,Kim Hyoung Chan,Ahn Yong-sikORCID,Kim ByoungkooORCID,Kang NamhynORCID,Nam Daegeun

Abstract

Functionally graded materials (FGMs) have a characteristic whereby the composition and structure are gradually changed according to the location, and the mechanical properties or chemical properties are gradually changed accordingly. In this study, using a multi-hopper direct energy deposition 3D printer, an FGM material whose composition changes gradually from P21 ferritic steel to stainless steel 316L austenitic steel was fabricated. From optical microscope, scanning electron microscope, and X-ray diffraction analysis, columnar, cell, and point type solidified micro-structure and precipitations were observed depending on the deposited compositions. Electron probe microanalysis and electron backscatter diffraction analysis confirmed the component segregation, ferrite austenite volume fraction and phase distribution behavior according to compositions. In the FGM specimen test, the ultimate tensile strength of STS316L, which was the most fragile, was measured, and the toughness was measured for the notch area, which did not represent the FGM characteristics. Hardness showed changes according to FGM position and was suitable for FGM analysis. The maximum hardness was measured in the FGM duplex area, which was caused by grain refinement, precipitate strengthening, and solid solution strengthening. In nuclear power plant welds high strength can cause adverse effects on stress corrosion cracking, and caution is needed in applying FGM.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3