Effect of Tempering Process on Microstructure and Properties of Resistance Spot-Welded Joints of δ-TRIP Steel

Author:

Lv Dong,Xu Xin,Wang Xiaonan,Ran Maoyu,Lu Yanpeng,Cao Zheng

Abstract

In this paper, a medium-frequency inverter spot welder was used for resistance spot-welding experiments on 980 MPa grade cold-rolled δ-TRIP(Transformation-induced Plasticity) steel. The effects of the tempering process on the morphology, microstructure, element distribution, and properties of spot-welded joints were studied by Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and Electron-Probe MicroAnalysis (EPMA). The microstructure of the nugget zone obtained by single-pulse process was δ ferrite, lath martensite, and twin martensite. After adding tempering under the single-pulse process, the microstructure was δ ferrite and lath martensite. However, the morphology of the microstructure was still dendritic, which remained unchanged. The tensile shear failure of spot-welded joints under the two processes was an interface failure, and the fractures were cleavage fractures. After adding tempering, the interface fracture surface presents two kinds of fracture characteristics: the outer cracks’ growth direction was consistent with the columnar crystal growth direction, and the inner crystal cracks occurred in the nugget core and finally grew along the columnar grain boundary. Due to the significant hardness difference between δ ferrite (283 HV) and martensite (533 HV), the low-strength δ ferrite phase was the main channel of crack propagation. After adding tempering, the hardness distribution of the spot-welded joints was more uniform and the tensile shear force increased (7.4 kN→8.5 kN).

Funder

National Natural Science Foundation of China

“Qinglan” Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference15 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3