Studies on Parameters Affecting Temperature of Liquid Steel and Prediction Using Modified AdaBoost.RT Algorithm Ensemble Extreme Learning Machine

Author:

Wang SenhuiORCID,Li HaifengORCID,Zhang Yongjie,Wang ChengORCID,He Xiang,Chen Denghong,Yang Ke

Abstract

The present work aimed to develop a predictive model for the end temperature of liquid steel in advance to support the smooth functioning of a vacuum tank degasser (VTD). An ensemble model that combines extreme learning machine (ELM) with a self-adaptive AdaBoost.RT algorithm was established for the regression problem. Based on analyzing the energy equilibrium of the VTD system, the factors were determined for predicting the end temperature of liquid steel. To establish a hybrid ensemble prediction model, an ELM algorithm was selected as the ensemble predictor due to its strong performance and robustness, and a modification of the AdaBoost.RT algorithm is proposed to overcome the drawback of the original AdaBoost.RT by embedding statistical theory to dynamically self-adjust the threshold value. For efficient VTD operations, an ensemble model that combines ELM with the self-adaptive AdaBoost.RT algorithm was established to model the end temperature of liquid steel. The proposed approach was analyzed and validated on actual production data derived from a steelmaking workshop in Baosteel. The experimental results reveal that the proposed model can improve the generalization performance, and the accuracy of the model is feasible for the secondary steel refining process. In addition, a polynomial equation is obtained from the ensemble predictive model for calculating the value of the end temperature. The predicted results are in good agreement with the actual data with <1.7% error.

Funder

Institute of Energy, Hefei Comprehensive National Science Center

Anhui Provincial Natural Science Foundation

Anhui University of Science and Technology’s Introduction of Talent Research Start Fund

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3