High-Temperature Wear Properties of 35Ni15Cr Fe-Based Self-Lubricating Die Materials

Author:

Pan Xudong,Wang HuajunORCID,Liu Qingyang,Yao Zhenhua,Li Jiabin,Jiang Cheng

Abstract

Hot forging dies play an important role in metallurgy, automotive, aerospace and weapons industries. However, due to the high temperature and high pressure of hot forging die and the working environment of cyclic load, the friction and wear performance of hot forging die is poor and the service life is low. The use of traditional lubricants can prolong the life of the mold, but it will cause environmental pollution, harm to workers’ health and other problems. In this paper, 35Ni15Cr Fe-based self-lubricating die material was prepared by high energy ball milling and vacuum sintering. The wear properties of the materials were studied under ball-to-disc wear conditions at 600 °C. The results show that when CaF2 content is 8 wt%, the friction coefficient and wear rate of the material are the lowest, which are 0.3 and 0.9166 × 10−5 mm2 min−1, respectively. When the load increases, the friction coefficient first increases and then decreases, but the wear rate continues to increase. The wear mechanism mainly includes abrasive wear, adhesive wear, oxidation wear and fatigue wear. The friction reduction mechanism is that CaF2 is precipitated from the self-lubricating mold material and Fe and Ni are oxidized to the boss on the wear surface. The broken boss and lubricant form a lubricating film and accumulate into a glaze layer. The material can be used in high temperature forging environment without additional lubricant.

Funder

Wuhan University of Technology Graduate Outstanding Thesis Cultivation Project.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference35 articles.

1. Analysis of the Friction and Wear Behaviour of Hot Work Tool Steel for Forging;Wear,2003

2. Effects ofSurface Treatments and Lubricants for Warm Forging Die Life;J. Mater. Process. Technol.,2001

3. Friction Characterization When Combining Laser Surface Texting and Graphite-Based Lubricants;J. Mater. Res. Technol.,2019

4. Spreading Behavior of Water Based Graphite Lubricants on Hot Die Surfaces;CIRP Ann. Manuf. Technol.,2006

5. Reasearch Status and Developing Trend of Solid Lubrication at High Temperatures;Tribology,1999

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3