The Challenges of Modeling Defect Behavior and Plasticity across Spatial and Temporal Scales: A Case Study of Metal Bilayer Impact

Author:

Granger Leah,Chen Muh-Jang,Brenner Donald,Zikry Mohammed

Abstract

Atomistic molecular dynamics (MD) and a microstructural dislocation density-based crystalline plasticity (DCP) framework were used together across time scales varying from picoseconds to nanoseconds and length scales spanning from angstroms to micrometers to model a buried copper–nickel interface subjected to high strain rates. The nucleation and evolution of defects, such as dislocations and stacking faults, as well as large inelastic strain accumulations and wave-induced stress reflections were physically represented in both approaches. Both methods showed similar qualitative behavior, such as defects originating along the impactor edges, a dominance of Shockley partial dislocations, and non-continuous dislocation distributions across the buried interface. The favorable comparison between methods justifies assumptions used in both, to model phenomena, such as the nucleation and interactions of single defects and partials with reflected tensile waves, based on MD predictions, which are consistent with the evolution of perfect and partial dislocation densities as predicted by DCP. This substantiates how the nanoscale as modeled by MD is representative of microstructural behavior as modeled by DCP.

Funder

US Department of Defense

DOE/Los Alamos

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3