The Effect of Friction Stir Welding Parameters on the Weldability of Aluminum Alloys with Similar and Dissimilar Metals: Review

Author:

Khalafe Wazir Hassan,Sheng Ewe LayORCID,Bin Isa Mohd Rashdan,Omran Abdoulhadi BorhanaORCID,Shamsudin Shazarel Bin

Abstract

The solid-state welding method known as friction stir welding (FSW) bonds two metallic work parts, whether the same or different, by plastically deforming the base metal. The frictional resistance between both metallic workpieces causes them to produce heat, which produces plastic deformation and welds them. However, the weldability and strength of FSW joints mainly depend on the FSW parameters. This review work highlights the previous research work on the FSW parameters and their effects on the weldability and quality of the aluminum alloys joined with similar and dissimilar metals through the FSW method. About 150 research studies were systematically reviewed, and the articles included data from peer-reviewed journals. It has been concluded that the key parameters, including welding speed, “rotational speed”, “plunge depth”, “spindle torque”, “shoulder design”, “base material”, “pin profile” and “tool type”, significantly affect the weldability of the aluminum joint through the FSW method. Also, the selection of these parameters is important and fundamental as they directly affect the joint. It is recommended that future work focuses on FSW for aluminum. Among these, the most essential is the application of artificial intelligence (AI) techniques to select the optimum FSW parameters for aluminum welding.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3