Abstract
Ti and V were bonded together and subjected to high-temperature treatment at 1000 or 1100 °C for 16 h to study the microstructural evolution and interfacial behavior of Ti–V diffusion interfaces. The samples were prepared by electro-polishing and analyzed using scanning electron microscopy, electron probe microanalysis, electron back-scattered diffraction, and nano-indentation. The results indicated that Ti–V diffusion bonding interfaces comprises a martensite Ti zone, a body-center-cubic Ti (β-Ti) zone, and a V-based alloy zone. They are divided by two composition interfaces with V contents of ~13.5% and ~46%. The original interface between the pure Ti and the V alloy substrate falls within the β-Ti zone. The observation of acicular-martensite rather than lath-martensite is due to the distortion caused by the β-to-α phase transformation in the adjacent pure Ti. The recrystallization of β-Ti is distributed along the interface direction. The hardness varies across the Ti–V interface bonding zones with the maximum value of 7.9 GPa.
Funder
National Natural Science Foundation of China
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献