Electrochemical Performance and Conductivity of N-Doped Carbon Nanotubes Annealed under Various Temperatures as Cathode for Lithium-Ion Batteries

Author:

Zhong ZhengjunORCID,Mahmoodi Soroosh,Li Dong,Zhong Shengwen

Abstract

Nitrogen-doped carbon nanotubes (NCNTs) are obtained using a post-treatment method under different sintering temperatures. The catalysts can be removed from the Carbon Nanotubes (CNTs) within an acid treatment process. Then, the purified CNTs can be employed as a nitrogen doping basis. This research adds melamine as a nitrogen source during the sintering procedure under different temperatures to achieve NCNTs, which are applied to the cathodes. LiMn2O4 (LMO) cathode slurries are prepared using pristine CNTs and NCNTs samples as conductive additives. Coin cell lithium-ion batteries (LIBs) are fabricated using slurry samples. X-ray photoelectron spectroscopical analysis shows the nitrogen doping degree is up to 5 atom%, and graphitic-N nitrogen groups are the dominating species present on the NCNT’s surface while being treated at 800 °C. Graphitic-N nitrogen groups improve the conductivity and surface area of the NCNTs, which increases the rate capacity (106.8 mA h g−1 at 5 C) and cyclic retention (92.45% of initial capacity after 200 cycles at 5 C) of the lithium-ion batteries. The morphology of the NCNTs, the concentration of NCNTs elements, and the electrochemical performances of coin cell batteries are extensively discussed.

Funder

National Natural Science Foundation of China

the Scientific Research Foundation for Universities from the Education Bureau of Jiangxi Province

the Natural Science Foundation of Jiangxi Province

the Jiangxi University of Science and Technology

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3