Abstract
Details and features of the grain structure near the interface region between the AlN ceramic phase and AlSi10Mg matrix after the laser powder bed fusion (LPBF) were investigated. Aluminum nitride particles were obtained through self-propagating high-temperature synthesis and mechanically mixed with aluminum matrix powder. Optimization of the LPBF process parameters resulted in synthesized material free of pores and other defects. Optical microscopy analysis of etched cross-section and more detailed EBSD analysis revealed regions with relatively coarse grains at melting pool boundaries and fine grains in the melt pool core and near the AlN particles. Moreover, a pronounced orientation of fine elongated matrix grains towards the center of the ceramic particle was obtained. The such formed microstructure is attributed to directional heat sink during crystallization due to the higher thermal conductivity of aluminum nitride compared to the AlSi10Mg matrix. On the contrary, poor wettability of AlN by melt partly prevented the formation of such features, thus a combination of these factors determines the final microstructure of the interface in the resulting material.
Funder
Russian Science Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献