Re-Austenitisation of Thin Ferrite Films in C–Mn Steels during Thermal Rebound at Continuously Cast Slab Corner Surfaces

Author:

Maubane Dannis Rorisang Nkarapa,Mostert Roelf JohannesORCID,Banks Kevin Mark

Abstract

The influence of primary cooling and rebound temperature at C–Mn slab corner surfaces during continuous casting on ferrite film transformation and AlN precipitation was investigated. Laboratory simulations included primary cooling to minimum temperature, Tmin, rebounding to various maximum temperatures, Tmax, followed by secondary cooling. The negative effect of a low Tmin on hot ductility could not be readily reversed, even at relatively high temperatures. Quantitative metallography was employed to study the evolution of the microstructure during rebounding and secondary cooling. Following primary cooling to temperatures just above the Ar3, thin films of allotriomorphic ferrite formed on the austenite grain boundaries. These films did not completely transform to austenite during the rebound at 3 °C/s up to temperatures as high as 1130 °C and persisted during slow secondary cooling up to the simulated straightening operation. Whilst dilatometry did not indicate the presence of ferrite after high rebound temperatures, metallography provided clear evidence of its existence, albeit in very small quantities. Coincident with the ferrite at these high temperatures was the predicted (TC-PRISMA) grain boundary precipitation of AlN in bcc iron during the rebound from a Tmin of 730 °C. Importantly no thin ferrite films were observed, and AlN precipitation was not predicted to occur when Tmin was restricted to 830 °C. Cooling below this temperature promotes austenite grain boundary ferrite films and AlN precipitation, which both increase the risk of corner cracking in C–Mn steels.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference13 articles.

1. Schrewe, H.F. (1987). Continuous Casting of Steel: Fundamental Principles and Practice, Verlag Stahleisen.

2. Hot ductility of steels and its relationship to the problem of transverse cracking during continuous casting;Mintz;Int. Mater. Rev.,1991

3. Influence of cooling rate on hot ductility of C-Mn-Al and C-Mn-Nb-Al steels;Abushosha;Mater. Sci. Technol.,1998

4. A secondary cooling pattern for preventing surface cracks on continuous casting slab;Nozaki;Trans. ISIJ,1978

5. Transverse cracking in continuously cast HSLA slabs–influence of composition;Coleman;Mater. Sci. Technol.,1985

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3