Geomechanical and Petrophysical Assessment of the Lower Turonian Tight Carbonates, Southeastern Constantine Basin, Algeria: Implications for Unconventional Reservoir Development and Fracture Reactivation Potential

Author:

Baouche Rafik,Sen SouvikORCID,Radwan Ahmed E.ORCID

Abstract

In this study, we assessed the unconventional reservoir characteristics of the Lower Turonian carbonates from the southeastern Constantine Basin. We integrated petrography, petrophysical, and rock-mechanical assessments to infer formation properties and unconventional reservoir development strategies. The studied fossiliferous argillaceous limestones are rich in planktonic foraminifera, deposited in a calm and low energy depositional condition, i.e., deep marine basinal environment. Routine core analysis exhibits very poor porosity (mostly < 5%) and permeability (<0.1 mD), implying the dominance of nano and microporosity. Micritization and calcite cementation are inferred as the major reservoir quality-destroying diagenetic factors. Based on the wireline log-based elastic properties, the upper part of the studied interval exhibits higher brittleness (BI > 0.48) and fracability (FI > 0.5) indices compared to the lower interval. Borehole breakouts indicate ~N-S SHmax orientation and a normal to strike-slip transitional stress state has been constrained based on a geomechanical assessment. We analyzed safe wellbore trajectory and minimum mud weight requirements to ensure stability in the deviated and horizontal wells required for field development. At the present stress state, none of the fracture orientations are critically stressed. We inferred the fracture reactivation potential during hydraulic stimulation required to bring the tight Turonian limestones into production. Additional pore pressure build-up required to reactivate optimally oriented natural fractures has also been inferred to ensure success of hydraulic fracturing.

Funder

Jagiellonian University: The Priority Research Area Anthropocene under the program “Excellence Initiative - Research University”

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3