Novel Cloud-Edge Collaborative Detection Technique for Detecting Defects in PV Components, Based on Transfer Learning

Author:

Wang Hongxi,Li Fei,Mo Wenhao,Tao Peng,Shen Hongtao,Wu Yidi,Zhang Yushuai,Deng Fangming

Abstract

The existing techniques for detecting defects in photovoltaic (PV) components have some drawbacks, such as few samples, low detection accuracy, and poor real-time performance. This paper presents a cloud-edge collaborative technique for detecting the defects in PV components, based on transfer learning. The proposed cloud model is based on the YOLO v3-tiny algorithm. To increase the detection effect of small targets, we produced a third prediction layer by fusing the shallow feature information with the stitching layer in the second detection scale and introducing a residual module to achieve improvement of the YOLO v3-tiny algorithm. In order to further increase the ability of the network model to extract target features, the residual module was introduced in the YOLO v3-tiny backbone network to increase network depth and learning ability. Finally, through the model’s transfer learning and edge collaboration, the adaptability of the defect-detection algorithm to personalized applications and real-time defect detection was enhanced. The experimental results showed that the average accuracy and recall rates of the improved YOLO v3-tiny for detecting defects in PV components were 95.5% and 93.7%, respectively. The time-consumption of single panoramic image detection is 6.3 ms, whereas the consumption of the model’s memory is 64 MB. After cloud-edge learning migration, the training time for a local sample model was improved by 66%, and the accuracy reached 99.78%.

Funder

Science and Technology Project of Natural State Grid Corporation of China

Natural Science Foundation of China

Key Research and Development Plan of Jiangxi Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3