An Asymptotic Energy Equation for Modelling Thermo Fluid Dynamics in the Optical Fibre Drawing Process

Author:

Luzi GiovanniORCID,Lee Seunghyeon,Gatternig BernhardORCID,Delgado Antonio

Abstract

Microstructured optical fibres (MOFs) are fibres that contain an array of air holes that runs through the whole fibre length. The hole pattern of these fibres can be customized to manufacture optical devices for different applications ranging from high-power energy transmission equipment to telecommunications and optical sensors. During the drawing process, the size of the preform is greatly scaled down and the original hole pattern result might be modified, potentially leading to unwanted optical effects. Because only a few parameters can be controlled during the fabrication process, mathematical models that can accurately describe the fibre drawing process are highly desirable, being powerful predictive tools that are significantly cheaper than costly experiments. In this manuscript, we derive a new asymptotic energy equation for the drawing process of a single annular capillary and couple it with existing asymptotic mass, momentum, and evolution equations. The whole asymptotic model only exploits the small aspect ratio of a capillary and relies on neither a fitting procedure nor on any empirical adjustable parameters. The numerical results of the simplified model are in good accordance with experimental data available in the literature both without inner pressurization and when internal pressure is applied. Although valid only for annular capillaries, the present model can provide important insights towards understanding the MOF manufacturing process and improving less detailed approaches for more complicated geometries.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3