Experimental Optimization of the Compound Angled Asymmetric Laidback Fan Shaped Film Cooling Hole

Author:

Jo Ye Rim,Jeong Jin Young,Kwak Jae SuORCID

Abstract

In this study, the effect of shape variables on the film cooling effectiveness of the compound angled asymmetric laidback fan shaped hole was experimentally investigated, and the optimum values of select design variables were presented. Among the shape variables of the compound angled asymmetric laidback fan shaped hole, the windward and leeward lateral expansion angles and the compound angle were selected as design variables. Test points were chosen using the central composite design method, and the selected design variables were optimized using the Kriging model. The film cooling effectiveness was measured using the PSP technique, and the experiment was conducted under the two density ratios of 1.5 and 2.0 and four blowing ratios of 1.0, 1.5, 2.0, and 2.5. Experimental results showed that the film cooling performance was improved for higher density ratios than lower density ratios. The main effects analysis indicated that larger windward and leeward lateral expansion angles induced higher film cooling effectiveness; however, the compound angle did not show consistent results. For the optimized hole at the density ratio 2.0, the results indicated that the overall averaged film cooling effectiveness of the optimized compound angled asymmetric laidback fan shaped hole was higher than that of the optimized fan shape holes of previous literature.

Funder

Korea Institute of Energy Technology Evaluation and Planning

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3