Modeling and Finite-Horizon MPC for a Boiler-Turbine System Using Minimal Realization State-Space Model

Author:

Wang JunORCID,Ding Baocang,Wang Ping

Abstract

This paper aims to address a finite-horizon model predictive control (MPC) for non-linear drum-type boiler-turbine system using a system-identification method. Considering that the strong state coupling of a non-linear mechanism model, the subspace identification method is first utilized to obtain a linear state-space model, and transformed into an input–output model. By taking the inputs and outputs of the input–output model as system states, an augmented non-minimal state-space (NMSS) model of state measurable is constructed. In order to reduce the computation burden, the augmented NMSS model is further transformed into a canonical formulation by adopting a Kalman decomposition. Based on the minimal realization state-space model, the MPC controller is parameterized as a finite-horizon optimization problem. Finally, simulations are performed and evaluated the performance of the proposed method, and the simulation results show that: the linear model approximate the non-linear system accurately; the proposed MPC method can achieve a satisfactory stable control performance; and the computation time 18.388 s for the overall optimization problem also illustrates the real-time performance effectively.

Funder

Chongqing Natural Science Foundation

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3