Potential of the Synthetic Fuel Oxymethylene Ether (OME) for the Usage in a Single-Cylinder Non-Road Diesel Engine: Thermodynamics and Emissions

Author:

Zacherl FlorianORCID,Wopper Christoph,Schwanzer PeterORCID,Rabl Hans-Peter

Abstract

Non-road sectors, such as agriculture and construction machinery, require high energy densities and flexibility in use, which is why diesel engines are mainly used. The use of climate-neutral fuels, produced from renewable energies, such as Oxymethylene Ether (OME) as a diesel substitute, can significantly reduce CO2 and pollutant emissions in these sectors. In addition to CO2 neutrality, OME also offers improved combustion characteristics compared to diesel fuel, eliminating the soot–NOx trade-off and thus enabling new opportunities in engine design and calibration. In this paper, the combustion of pure OME on a close-to-production, single-cylinder non-road diesel engine with a pump–line–nozzle injection system is analyzed. A variation of the center of combustion at constant power output was performed for diesel and OME at different operating points. Two injectors were investigated with OME. A study on ignition delay and a detailed thermodynamic analysis was carried out. In addition, the exhaust emissions CO, NOx, VOC, as well as particulate-matter, -number and -size distributions were measured. With OME, a significantly shorter ignition delay as well as a shortened combustion duration could be observed, despite a longer injection duration. In addition, the maximum injection pressure increases. VOC and CO emissions are reduced. Particulate matter was reduced by more than 99% and particle number (>10 nm) was reduced by multiple orders of magnitude. The median of the particle size distribution shifts from 60 to 85 nm (diesel) into a diameter range of sub 23 nm (OME). A significant reduction of NOx emissions with OME enables new degrees of freedom in engine calibration and an efficiency advantage without hardware adaption.

Funder

German Federal Ministry of Education and Research (BMBF) within the “Nachhaltige Mobilität durch synthetische Kraftstoffe” (NAMOSYN) project

Project Management Agency Jülich

OTH Regensburg

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference82 articles.

1. Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., and Pidcock, R. (2018). IPCC, 2018: Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, Cambridge University Press.

2. Stromgenerierte Kraftstoffe für mobile Maschinen;Omari;ATZ Offhighway,2018

3. Geringer, B., and Lenz, H.P. Erneuerbare Energien in der Mobilität: Das Potential synthetischer kraftstoffe auf der Basis von CO2. Proceedings of the 39 Internationales Wiener Motorensymposium, Fortschritt-Berichte VDI. Reihe 12, Verkehrstechnik, Fahrzeugtechnik.

4. Alternative Kraftstoffe CO2-neutral in die Zukunft;Backhaus;MTZ-Mot. Z.,2017

5. Burger, J. (2012). A Novel Process for the Production of Diesel Fuel Additives by Hierarchical Design: Zugl, Technical University of Kaiserslautern.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3