Abstract
The effects of varying modulation indices on the current and voltage harmonics of an induction motor (IM) powered by a three-phase space vector pulse-width modulation (SVM) inverter are presented in this research. The effects were examined using simulation and an experimental setup. IMs can be governed by an SVM inverter drive or a phase-angle control drive for applications that require varying speeds. The analysis of THD content in this study used the modulation index (MI), whose modification affects the harmonic content, and voltage-oriented control (VOC) with SVM in three-phase pulse-width modulation (PWM) inverters with fixed switching frequencies. The control technique relies on two cascaded feedback loops, one controlling the grid current and the other regulating the dc-link voltage to maintain the required level of dc-bus voltage. The control strategy was developed to transform between stationary (α–β) and synchronously rotating (d–q) coordinate systems. To test the viability of the suggested control technique, a 1-hp/3-phase/415-V experimental prototype system built on the DSPACE DS1104 platform was created, and the outcomes were evaluated with sinusoidal pulse-width modulation (SPWM).
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献