Thermo-Hydraulic Performance of Multiple Channels and Pin Fins Forming Convergent/Divergent Shape

Author:

Saghir Mohamad ZiadORCID

Abstract

Heat enhancement has been addressed by studying flow in channels with different shapes. The present paper investigates a particular channel shape with divergent and convergent forms. Two configurations are addressed: wall channels and pin-fin walls forming divergent/convergent shapes. The flow is assumed to be in a laminar and steady-state condition. The numerical model investigated the heat enhancement for different flow rates represented by Reynolds numbers. The average Nusselt number and the performance evaluation criterion revealed that wall channels outperformed the pin-fin shape. The performance evaluation criterion is higher than 1 for the wall channels. The main reason for this is that the flow passes through and above the wall creating mixing. This flow configuration happened since the wall height is shorter than the test cavity height. It is important to emphasize that pin-fins forming convergent channels did not improve heat enhancement when compared to convergent channels. No significant variation in the pressure drop was detected.

Funder

National Science and Engineering Research Canada

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3