Performance Analysis of a Hydrogen-Doped High-Efficiency Hybrid Cycle Rotary Engine in High-Altitude Environments Based on a Single-Zone Model

Author:

Yang Zhenghao,Du Yang,Geng QiORCID,Gao Xu,Er Haonan,Liu Yuanfei,He Guangyu

Abstract

The power attenuation of internal combustion engines in high-altitude environments restricts the performance of unmanned aerial vehicles. Herein, a single-zone model of a hydrogen-doped high-efficiency hybrid cycle rotary engine that considers high-altitude environments was proposed. The indicated values for power, thermal efficiency, and specific fuel cost were used to evaluate the power performance, energy conversion efficiency, and economic performance of the engine, respectively. Then, the effects of adjusting the hydrogen fraction, ignition angle, and rotational speed on high-altitude performance were analyzed. The results showed that high-altitude environments prolonged combustion duration and reduced in-cylinder pressure, thereby causing power attenuation; however, increasing the hydrogen fraction can increase the indicated power. At an altitude of 6 km, the indicated power with a hydrogen fraction of 0.3 was approximately 20.7% higher than that obtained with pure gasoline. The ignition angle and hydrogen fraction corresponding to the optimal indicated thermal efficiency increased with increasing altitude. At an altitude of 6 km, the indicated thermal efficiency reached its maximum (36.4%) at an ignition angle of 340 [CA°] and a hydrogen fraction of 0.15. At high altitudes, rotational speeds below 6000 rpm and ignition angles of 340–345 [CA°] were beneficial in reducing indicated specific fuel costs.

Funder

Science and Technology on Plasma Dynamics Laboratory Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3