Review of the State-of-the-Art Uses of Minimal Surfaces in Heat Transfer

Author:

Dutkowski KrzysztofORCID,Kruzel MarcinORCID,Rokosz KrzysztofORCID

Abstract

The design of heat exchangers may change dramatically through the use of additive manufacturing (AM). Additive manufacturing, colloquially known as 3D printing, enables the production of monolithic metal bodies, devoid of contact resistance. The small volume of the exchanger, its lightness of weight, and the reduction of its production costs, compared to conventional methods, make the production of heat exchangers by AM methods conventional technologies. The review study presents a new look at the TPMS as a promising type of developed surface that can be used in the area of heat transfer. (Thus far, the only attractive option. The most important feature of additive manufacturing is the ability to print the geometry of theoretically any topography. Such a topography can be a minimal surface or its extended version—triply periodic minimal surface (TPMS). It was practically impossible to manufacture a TPMS-based heat exchanger with the method of producing a TPMS.) The issues related to the methods of additive manufacturing of metal products and the cycle of object preparation for printing were discussed, and the available publications presenting the results of CFD simulations and experimental tests of heat exchangers containing a TPMS in their construction were widely discussed. It has been noticed that the study of thermal-flow heat transfer with the use of TPMSs is a new area of research, and the number of publications in this field is very limited. The few data (mainly CFD simulations) show that the use of TPMSs causes, on the one hand, a several-fold increase in the number of Nu, and on the other hand, an increase in flow resistance. The use of TPMSs in heat exchangers can reduce their size by 60%. It is concluded that research should be carried out in order to optimize the size of the TPMS structure and its porosity so that the gains from the improved heat transfer compensate for the energy expenditure on the transport of the working fluid. It has been noticed that among the numerous types of TPMSs available for the construction of heat exchangers, practically, four types have been used thus far: primitive, gyroid, I-WP, and diamond. At the moment, the diamond structure seems to be the most promising in terms of its use in the construction of heat exchangers and heat sinks. It is required to conduct experimental research to verify the results of the CFD simulation.

Funder

Polish National Science Center

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference130 articles.

1. State-of-the-art of selective laser melting process: A comprehensive review;Sefene;J. Manuf. Syst.,2022

2. Bioinspired heat exchangers based on triply periodic minimal surfaces for supercritical CO2 cycles;Li;Appl. Therm. Eng.,2020

3. 3D printed triply periodic minimal surfaces as spacers for enhanced heat and mass transfer in membrane distillation;Thomas;Desalination,2018

4. Computational Fluid Dynamics Simulation for Carbon Dioxide Gas Transport through Polydimethylsiloxane Membrane with Gyroid Structure;Sithamparam;Materials Today: Proceedings,2021

5. Mesoporous platinum nickel thin films with double gyroid morphology for the oxygen reduction reaction;Kibsgaard;Nano Energy,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3