A New Determining Method for Ionospheric F2-Region Peak Electron Density Height

Author:

Wang Jian123ORCID,Yu Qiao1,Shi Yafei12ORCID,Yang Cheng2ORCID,Ji Shengyun2,Zheng Yu24ORCID

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

2. Qingdao Institute for Ocean Technology, Tianjin University, Qingdao 266200, China

3. Shandong Engineering Technology Research Center of Ocean Information Awareness and Transmission, Qingdao 266200, China

4. College of Electronic Information, Qingdao University, Qingdao 266071, China

Abstract

The height of the F2 peak electron density (hmF2) is an essential parameter in studying ionospheric electrodynamics and high-frequency wireless communication. Based on ionosphere ray propagation theory, the physical relationship between M3000F2 and hmF2 is derived and visualized. Furthermore, based on the above physical theory and the machine learning method, this paper proposes a new model for determining hmF2 using propagation factor at a distance of 3000 km from the ionospheric F2 layer, time, and season. This proposed model is easy to understand and has the characteristics of clear principles, simple structure, and easy application. Furthermore, we used six stations in east Asia to verify this model and compare it with the other three models of the International Reference Ionosphere (IRI) model. The results show that the proposed model (PRO) has minor error and higher accuracy. Specifically the RMSE of the BSE, AMTB, SHU, and the PRO models were 20.35 km, 31.51 km, 13.59 km, and 5.68 km, respectively, and the RRMSE of the BSE, AMTB, SHU, and PRO models were 8.17%, 11.88%, 4.96%, and 2.12%, respectively. In addition, the experimental results show that the PRO model can better predict the trend of the hmF2 inflection point. This method can be further extended to add data sources and provide new ideas for studying the hmF2 over global regions.

Funder

State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information Systems

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3