Affiliation:
1. Weitzman School of Design, University of Pennsylvania, Philadelphia, PA 19104, USA
2. College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
Abstract
This study developed a precise land cover model to predict the shifts from pervious to impervious surfaces in the Chesapeake watershed. Utilizing 1 m resolution longitudinal land cover data from the Conservation Innovation Center (CIC), our model achieved impressive balanced accuracies: 98.96% for Portsmouth, 99.88% for Isle of Wight, and 95.76% for James City. Based on the analysis of feature importance, our model also assessed the influence of local socioeconomic and environmental factors, along with their spatial lags as represented by natural splines. These outcomes and findings are crucial for land use and environmental planners, providing them with tools to identify areas of urban expansion and to devise appropriate green infrastructure strategies, while also prioritizing land conservation. Additionally, our model offers insights into the socioeconomic and environmental drivers behind land cover changes. Its adaptability at the county level and reliance on widely available data make it a viable option for other municipalities within the Chesapeake basin to conduct similar analyses. As a proof-of-concept, this project underscores the potential of precision conservation in facilitating both land preservation and the advancement of green infrastructure planning, thus serving as a valuable resource for policymakers and planners in the region.
Funder
Taylor Geospatial Institute