Spatial Heterogeneity and the Increasing Trend of Vegetation and Their Driving Mechanisms in the Mountainous Area of Haihe River Basin

Author:

Cao Bo12,Wang Yan123,Zhang Xiaolong1ORCID,Shen Yan-Jun1ORCID

Affiliation:

1. Key Laboratory of Agricultural Water Resources, Hebei Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. College of Geographical Sciences, Hebei Normal University, Shijiazhuang 050024, China

Abstract

In addition to serving as North China’s water supply and ecological barrier, the mountainous area of the Haihe River basin (MHRB) is a crucial location for the application of ecological engineering. Vegetation is an important component in the ecological conservation and eco-hydrological progress of the MHRB. A better understanding of regional vegetation growth can be achieved by a thorough investigation of vegetation indicators. In this research, the leaf area index (LAI) and gross primary productivity (GPP) were chosen as vegetation indicators. The characteristics and driving forces of the spatiotemporal variations of LAI and GPP in the MHRB were explored through Sen’s slope, the Mann–Kendall test, the optimal parameter-based geographical detector model, and correlation analysis. From 2001 to 2018, the annual LAI and GPP increased significantly on the regional scale. The areas with significantly increased vegetation accounted for more than 81% of the MHRB. Land use was the most influential element for the spatial heterogeneity of LAI and GPP, and the humidity index was the most crucial one among climate indicators. Non-linear enhancement or bivariate enhancement was discovered between any two factors, and the strongest interaction was from land use and humidity index. The lowest vegetation cover was found in dry regions with annual precipitation below 407 mm and the humidity index under 0.41; while in both forests and large undulating mountains, higher LAI and GPP were observed. About 87% of the significantly increased vegetation was found in areas with unaltered land use. The increase in vegetation in the MHRB from 2001 to 2018 was promoted by the increased precipitation and humidity index and the reduced vapor pressure deficit. The sensitivity of GPP to climate change was stronger than that of LAI. These findings can serve as a theoretical guide for the application of ecological engineering and ecological preservation in the MHRB.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Hebei Province

Hebei Provincial Key R&D Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3