Dynamic Spatial–Spectral Feature Optimization-Based Point Cloud Classification

Author:

Zhang Yali123ORCID,Feng Wei123,Quan Yinghui123,Ye Guangqiang4,Dauphin Gabriel5ORCID

Affiliation:

1. The Department of Remote Sensing Science and Technology, School of Electronic Engineering, Xidian University, Xi’an 710071, China

2. Xi’an Key Laboratory of Advanced Remote Sensing, Xi’an 710071, China

3. Key Laboratory of Collaborative Intelligence Systems, Ministry of Education, Xidian University, Xi’an 710071, China

4. School of Aerospace Engineering, Air Force Engineering University, Xi’an 710071, China

5. The Laboratory of Information Processing and Transmission, L2TI, Institut Galilé, University Paris XIII, 93430 Villetaneuse, France

Abstract

With the development and popularization of LiDAR technology, point clouds are becoming widely used in multiple fields. Point cloud classification plays an important role in segmentation, geometric analysis, and vegetation description. However, existing point cloud classification algorithms have problems such as high computational complexity, a lack of feature optimization, and low classification accuracy. This paper proposes an efficient point cloud classification algorithm based on dynamic spatial–spectral feature optimization. It can eliminate redundant features, optimize features, reduce computational costs, and improve classification accuracy. It achieves feature optimization through three key steps. First, the proposed method extracts spatial, geometric, spectral, and other features from point cloud data. Then, the Gini index and Fisher score are used to calculate the importance and relevance of features, and redundant features are filtered. Finally, feature importance factors are used to dynamically enhance the discriminative power of highly distinguishable features to strengthen their contribution to point cloud classification. Four real-scene datasets from STPLS3D are utilized for experimentation. Compared to the other five algorithms, the proposed algorithm achieves at least a 37.97% improvement in mean intersection over union (mIoU). Meanwhile, the results indicate that the proposed algorithm can achieve high-precision point cloud classification with low computational complexity.

Funder

National Natural Science Foundation of China

Basic Research Program of Natural Sciences of Shaanxi Province

Shaanxi Forestry Science and Technology Innovation Key Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3