A Comparison of Different Machine Learning Methods to Reconstruct Daily Evapotranspiration Time Series Estimated by Thermal–Infrared Remote Sensing

Author:

Zhao Gengle1,Song Lisheng2,Zhao Long1ORCID,Tao Sinuo1

Affiliation:

1. School of Geographical Sciences, Southwest University, Chongqing 400715, China

2. School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China

Abstract

Remote sensing-based models usually have difficulty in generating spatio-temporally continuous terrestrial evapotranspiration (ET) due to cloud cover and model failures. To overcome this problem, machine learning methods have been widely used to reconstruct ET. Therefore, studies comparing and evaluating the accuracy and effectiveness of reconstruction among different machine learning methods at the basin scale are necessary. In this study, four popular machine learning methods, including deep forest (DF), deep neural network (DNN), random forest (RF) and extreme gradient boosting (XGB), were used to reconstruct the ET product, addressing gaps resulting from cloud cover and model failure. The ET reconstructed by the four methods was evaluated and compared for Heihe River Basin. The results showed that the four methods performed well for Heihe River Basin, but the RF method was particularly robust. It not only performed well compared with ground measurements (R = 0.73) but also demonstrated the ability to fully reconstruct gaps generated by the TSEB model across the entire basin. Validation based on ground measurements showed that the DNN and XGB models performed well (R > 0.70). However, some gaps still existed in the desert after reconstruction using the DNN and XGB models, especially for the XGB model. The DF model filled these gaps throughout the basin, but this model had lower consistency compared with ground measurements (R = 0.66) and yielded many low values. The results of this study suggest that machine learning methods have considerable potential in the reconstruction of ET at the basin scale.

Funder

National Natural Science Foundation of China

Anhui Province’s University Science Project for Distinguished Young Scholars

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3