Attention-Based Monocular Depth Estimation Considering Global and Local Information in Remote Sensing Images

Author:

Lv Junwei123,Zhang Yueting123ORCID,Guo Jiayi123,Zhao Xin123ORCID,Gao Ming123,Lei Bin12

Affiliation:

1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. Key Laboratory of Technology in Geo-Spatial Information Processing and Application Systems, Chinese Academy of Sciences, Beijing 100190, China

3. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 101408, China

Abstract

Monocular depth estimation using a single remote sensing image has emerged as a focal point in both remote sensing and computer vision research, proving crucial in tasks such as 3D reconstruction and target instance segmentation. Monocular depth estimation does not require multiple views as references, leading to significant improvements in both time and efficiency. Due to the complexity, occlusion, and uneven depth distribution of remote sensing images, there are currently few monocular depth estimation methods for remote sensing images. This paper proposes an approach to remote sensing monocular depth estimation that integrates an attention mechanism while considering global and local feature information. Leveraging a single remote sensing image as input, the method outputs end-to-end depth estimation for the corresponding area. In the encoder, the proposed method employs a dense neural network (DenseNet) feature extraction module with efficient channel attention (ECA), enhancing the capture of local information and details in remote sensing images. In the decoder stage, this paper proposes a dense atrous spatial pyramid pooling (DenseASPP) module with channel and spatial attention modules, effectively mitigating information loss and strengthening the relationship between the target’s position and the background in the image. Additionally, weighted global guidance plane modules are introduced to fuse comprehensive features from different scales and receptive fields, finally predicting monocular depth for remote sensing images. Extensive experiments on the publicly available WHU-OMVS dataset demonstrate that our method yields better depth results in both qualitative and quantitative metrics.

Funder

The National Natural Science Foundation of China

Key Research and Development Program of Aerospace Information Research Institute Chinese Academy of Sciences

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Remote Sensing Image Scene Classification Based on an Enhanced Attention Module;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3