Radargrammetric 3D Imaging through Composite Registration Method Using Multi-Aspect Synthetic Aperture Radar Imagery

Author:

Luo Yangao12,Deng Yunkai1,Xiang Wei1ORCID,Zhang Heng1,Yang Congrui1,Wang Longxiang12

Affiliation:

1. Department of Space Microwave Remote Sensing System, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

Interferometric synthetic aperture radar (InSAR) and tomographic SAR measurement techniques are commonly used for the three-dimensional (3D) reconstruction of complex areas, while the effectiveness of these methods relies on the interferometric coherence among SAR images with minimal angular disparities. Radargrammetry exploits stereo image matching to determine the spatial coordinates of corresponding points in two SAR images and acquire their 3D properties. The performance of the image matching process directly impacts the quality of the resulting digital surface model (DSM). However, the presence of speckle noise, along with dissimilar geometric and radiometric distortions, poses considerable challenges in achieving accurate stereo SAR image matching. To address these aforementioned challenges, this paper proposes a radargrammetric method based on the composite registration of multi-aspect SAR images. The proposed method combines coarse registration using scale invariant feature transform (SIFT) with precise registration using normalized cross-correlation (NCC) to achieve accurate registration between multi-aspect SAR images with large disparities. Furthermore, the multi-aspect 3D point clouds are merged using the proposed radargrammetric 3D imaging method, resulting in the 3D imaging of target scenes based on multi-aspect SAR images. For validation purposes, this paper presents a comprehensive 3D reconstruction of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) using Ka-band airborne SAR images. It does not necessitate prior knowledge of the target and is applicable to the detailed 3D imaging of large-scale areas with complex structures. In comparison to other SAR 3D imaging techniques, it reduces the requirements for orbit control and radar system parameters. To sum up, the proposed 3D imaging method with composite registration guarantees imaging efficiency, while enhancing the imaging accuracy of crucial areas with limited data.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference29 articles.

1. SAR imaging of moving targets;Perry;IEEE Trans. Aerosp. Electron. Syst.,1999

2. Precision SAR processing using chirp scaling;Raney;IEEE Trans. Geosci. Remote Sens.,1994

3. The wavenumber shift in SAR interferometry;Gatelli;IEEE Trans. Geosci. Remote Sens.,1994

4. Synthetic aperture radar interferometry;Bamler;Inverse Probl.,1998

5. Synthetic aperture radar interferometry;Rosen;Proc. IEEE,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3