Effects of Canopy Damage and Litterfall Input on CO2-Fixing Bacterial Communities

Author:

Yu Fei1,Li Zhen1,Liang Junfeng2,Zhao Houben2

Affiliation:

1. College of Forestry, Shanxi Agricultural University, Jinzhong 030801, China

2. Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China

Abstract

Extreme weather events often cause canopy disturbance and litter deposition. To study the CO2-fixing bacterial response to forest damage, we simulated the canopy damage caused by extreme weather with four different treatments: control (CN), canopy trimming + removal of branches and leaves debris (TR), canopy trimming + retaining of branches and leaves debris (TD), and undamaged + transplantation of branches and leaves debris (UD). We used the cbbL gene, which encodes ribulose-1,5-biphosphate carboxylase/oxygenase (RubisCO), for Miseq sequencing to analyze the dynamics of community composition of soil CO2-fixing bacteria for five consecutive years after canopy damage. Double treatments of canopy damage and litterfall inputs (TD) facilitate forest restoration better than single treatments (TR or UD). Most soil CO2-fixing bacteria are facultative autotrophic bacteria, and Nitrosospira, Streptomyces, and Saccharomonospora are the main carbon-fixing microorganisms, which have significant differences during the restoration of damaged forest canopy. The forest ecosystem restoration after canopy damage lasted 4–5 years. Rainfall and pH showed a significant negative correlation with most soil CO2-fixing bacteria communities. This study provides a theoretical basis for improving the carbon sequestration capacity of forest soil CO2-fixing bacteria after extreme weather and also provides guidance for forest ecosystem management.

Funder

National Natural Science Foundation of China

Scientific and Technological Innovation Project of Colleges and Universities in Shanxi Province

Science and technology innovation fund of Shanxi Agricultural University

Award for Excellent Doctoral work in Shanxi

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3