Mapping Transformation Enabled High-Performance and Low-Energy Memristor-Based DNNs

Author:

Oli-Uz-Zaman Md.ORCID,Khan Saleh AhmadORCID,Yuan Geng,Liao ZhihengORCID,Fu JingyanORCID,Ding Caiwen,Wang Yanzhi,Wang JinhuiORCID

Abstract

When deep neural network (DNN) is extensively utilized for edge AI (Artificial Intelligence), for example, the Internet of things (IoT) and autonomous vehicles, it makes CMOS (Complementary Metal Oxide Semiconductor)-based conventional computers suffer from overly large computing loads. Memristor-based devices are emerging as an option to conduct computing in memory for DNNs to make them faster, much more energy efficient, and accurate. Despite having excellent properties, the memristor-based DNNs are yet to be commercially available because of Stuck-At-Fault (SAF) defects. A Mapping Transformation (MT) method is proposed in this paper to mitigate Stuck-at-Fault (SAF) defects from memristor-based DNNs. First, the weight distribution for the VGG8 model with the CIFAR10 dataset is presented and analyzed. Then, the MT method is used for recovering inference accuracies at 0.1% to 50% SAFs with two typical cases, SA1 (Stuck-At-One): SA0 (Stuck-At-Zero) = 5:1 and 1:5, respectively. The experiment results show that the MT method can recover DNNs to their original inference accuracies (90%) when the ratio of SAFs is smaller than 2.5%. Moreover, even when the SAF is in the extreme condition of 50%, it is still highly efficient to recover the inference accuracy to 80% and 21%. What is more, the MT method acts as a regulator to avoid energy and latency overhead generated by SAFs. Finally, the immunity of the MT Method against non-linearity is investigated, and we conclude that the MT method can benefit accuracy, energy, and latency even with high non-linearity LTP = 4 and LTD = −4.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 256‐level honey memristor‐based in‐memory neuromorphic system;Electronics Letters;2024-09

2. AIoT and Cloud Enabled Flexible and Reliable Monitoring Platform;2024 4th International Conference on Computer Communication and Artificial Intelligence (CCAI);2024-05-24

3. An overview memristor based hardware accelerators for deep neural network;Concurrency and Computation: Practice and Experience;2024-01-04

4. Cycle-to-Cycle Variation Suppression in ReRAM-Based AI Accelerators;2023 IEEE Physical Assurance and Inspection of Electronics (PAINE);2023-10-24

5. Three-dimensional Environmentally Sustainable Neuromorphic Computing System Based on Natural Organic Memristor;2023 IEEE 66th International Midwest Symposium on Circuits and Systems (MWSCAS);2023-08-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3