The Potential of SoC FPAAs for Emerging Ultra-Low-Power Machine Learning

Author:

Hasler JenniferORCID

Abstract

Large-scale field-programmable analog arrays (FPAA) have the potential to handle machine inference and learning applications with significantly low energy requirements, potentially alleviating the high cost of these processes today, even in cloud-based systems. FPAA devices enable embedded machine learning, one form of physical mixed-signal computing, enabling machine learning and inference on low-power embedded platforms, particularly edge platforms. This discussion reviews the current capabilities of large-scale field-programmable analog arrays (FPAA), as well as considering the future potential of these SoC FPAA devices, including questions that enable ubiquitous use of FPAA devices similar to FPGA devices. Today’s FPAA devices include integrated analog and digital fabric, as well as specialized processors and infrastructure, becoming a platform of mixed-signal development and analog-enabled computing. We address and show that next-generation FPAAs can handle the required load of 10,000–10,000,000,000 PMAC, required for present and future large fielded applications, at orders of magnitude of lower energy levels than those expected by current technology, motivating the need to develop these new generations of FPAA devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reprogrammable Non-Linear Circuits Using ReRAM for NN Accelerators;ACM Transactions on Reconfigurable Technology and Systems;2024-01-27

2. Memristor-only LSTM Acceleration with Non-linear Activation Functions;IFIP Advances in Information and Communication Technology;2023

3. A Programmable On-Chip Hopf Bifurcation Circuit;IEEE Transactions on Circuits and Systems I: Regular Papers;2022-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3