A Novel Inductorless Design Technique for Linear Equalization in Optical Receivers

Author:

Abdelrahman DiaaeldinORCID,Williams Christopher,Liboiron-Ladouceur OdileORCID,Cowan Glenn E. R.

Abstract

To mitigate the trade-off between gain and bandwidth of CMOS multistage amplifiers, a receiver front-end (FE) that employs a high-gain narrowband transimpedance amplifier (TIA) followed by an equalizing main amplifier (EMA) is proposed. The EMA provides a high-frequency peaking to extend the FE’s bandwidth from 25% to 60% of the targeted data rate fbit. The peaking is realized by adding a pole in the feedback paths of an active feedback-based wideband amplifier. By embedding the peaking in the main amplifier (MA), the front-end meets the sensitivity and gain of conventional equalizer-based receivers with better energy efficiency by eliminating the equalizer stages. Simulated in TSMC 65 nm CMOS technology, the proposed front-end achieves 7.4 dB and 6 dB higher gain at 10 Gb/s and 20 Gb/s, respectively, compared to a conventional front-end that is designed for equal bandwidth and dissipates the same power. The higher gain demonstrates the capability of the proposed technique in breaking the gain-bandwidth trade-off. The higher gain also reduces the power penalty incurred by the decision circuit and improves the sensitivity by 1.5 dB and 2.24 dB at 10 Gb/s and 20 Gb/s, respectively. Simulations also confirm that the proposed FE exhibits a robust performance against process and temperature variations and can support large input currents.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering

Reference22 articles.

1. A 100-Gb/s PAM-4 Optical Receiver With 2-Tap FFE and 2-Tap Direct-Feedback DFE in 28-nm CMOS

2. Broadband Circuits for Optical Fiber Communication;Säckinger,2005

3. Bandwidth Enhancement With Low Group-Delay Variation for a 40-Gb/s Transimpedance Amplifier;Kim;IEEE Trans. Circuits Syst. I Reg. Pap.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3