Secure Outsourcing of Matrix Determinant Computation under the Malicious Cloud

Author:

Song MingyangORCID,Sang YingpengORCID

Abstract

Computing the determinant of large matrix is a time-consuming task, which is appearing more and more widely in science and engineering problems in the era of big data. Fortunately, cloud computing can provide large storage and computation resources, and thus, act as an ideal platform to complete computation outsourced from resource-constrained devices. However, cloud computing also causes security issues. For example, the curious cloud may spy on user privacy through outsourced data. The malicious cloud violating computing scripts, as well as cloud hardware failure, will lead to incorrect results. Therefore, we propose a secure outsourcing algorithm to compute the determinant of large matrix under the malicious cloud mode in this paper. The algorithm protects the privacy of the original matrix by applying row/column permutation and other transformations to the matrix. To resist malicious cheating on the computation tasks, a new verification method is utilized in our algorithm. Unlike previous algorithms that require multiple rounds of verification, our verification requires only one round without trading off the cheating detectability, which greatly reduces the local computation burden. Both theoretical and experimental analysis demonstrate that our algorithm achieves a better efficiency on local users than previous ones on various dimensions of matrices, without sacrificing the security requirements in terms of privacy protection and cheating detectability.

Funder

the Science and Technology Program of Guangzhou, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference40 articles.

1. Security guidance for critical areas of focus in cloud computing v2.1;Brunette;Cloud Secur. Alliance,2017

2. On the Security and Privacy Challenges of Virtual Assistants

3. How to play any mental game, or a completeness theorem for protocols with honest majority;Goldreich,2019

4. Practical and Secure Outsourcing Algorithms of Matrix Operations Based on a Novel Matrix Encryption Method

5. Cloud Computing Service: The Caseof Large Matrix Determinant Computation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3