Interaction of Electron Beams and Polarized Radiation in a Two-Beam Free-Electron Laser

Author:

Nam Soon-Kwon,Park Yunseong

Abstract

Recent research has focused on shorter pulses, new spectral ranges, higher photon fluxes, and the production of photons with a variety of polarizations. A time-dependent three-dimensional free-electron laser oscillator code was developed for a two-beam free-electron laser system with an elliptically polarized undulator. Characteristics of the interaction of the electron beams and polarized radiation in the XUV region were studied using this code. The code utilized an optical field using the spectral method in the paraxial approximation by a fast Fourier transformation, a Gaussian modal expansion for the optical field, and Newton–Lorentz force equations for particle tracking. As the emittance was increased, the degrees of polarization of the single-beam system with an elliptically polarized undulator and the two-beam system with a planar undulator were decreased significantly compared to those of a two-beam system with an elliptically polarized undulator in the XUV regions. The radiation intensities, the evolutions of the radiation power for wavelength, and the time in the two-beam system were increased significantly compared to those of a single-beam system. The statistical simulation result for the distribution of the number of shots in the degrees of polarization in the two-beam system was much better than that of the case with the single-beam system.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3