Abstract
The traction motor (TM) is an essential part of the high-speed train, the health condition of which determines the quality and safety of the vehicle. Hence, this study proposed a novel approach to diagnosing and predicting the TM stator interturn short-circuit fault (SISCF). Based on the Park vector (PV) of the stator current, this method could overcome the interference of current sensor errors, null shift, and motor frequency fluctuations in the actual conditions. More specifically, Park’s transformation was used to obtain the PV of the stator current. Then, the PV was fitted to obtain the elliptical trajectory and its parameters from which the negative sequence component of the stator current could be calculated. Finally, the SISCF diagnosis and prediction method were realized by the magnitude and trend of the negative current as well as the inclination of the trajectory ellipse. Furthermore, the performance of the proposed method was validated by a simulation model and a series of experiments. The simulation results were consistent with the experimental results, supporting the validity and correctness of the method proposed in this study.
Funder
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献