Abstract
Advances in communication technologies and protocols among vehicles, charging stations, and controllers have enabled the application of scheduling techniques to prioritize EV fleet charging. From the perspective of users, residential EV charging must particularly address cost-effective solutions to use energy more efficiently and preserve the lifetime of the battery—the most expensive element of an EV. Considering this matter, this research addresses a residential EV charging scheduling model including battery degradation aspects when discharging. Due to the non-linear characteristics of charging and battery degradation, we consider a mixed integer non-linearly constrained formulation with the aim of scheduling the charging and discharging of EVs to satisfy the following goals: prioritizing charging, reducing charging costs and battery degradation, and limiting the power demand requested to the distribution transformer. The results shows that, when EVs are discharged before charging up within a specific state-of-charge range, degradation can be reduced by 5.3%. All charging requests are completed before the next-day departure time, with 16.35% cost reduction achieved by scheduling charging during lower tariff prices, in addition to prevention of overloading of the distribution transformer.
Funder
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献