Battery-Conscious, Economic, and Prioritization-Based Electric Vehicle Residential Scheduling

Author:

Sausen Jordan P.ORCID,Abaide Alzenira R.,Vasquez Juan C.,Guerrero Josep M.ORCID

Abstract

Advances in communication technologies and protocols among vehicles, charging stations, and controllers have enabled the application of scheduling techniques to prioritize EV fleet charging. From the perspective of users, residential EV charging must particularly address cost-effective solutions to use energy more efficiently and preserve the lifetime of the battery—the most expensive element of an EV. Considering this matter, this research addresses a residential EV charging scheduling model including battery degradation aspects when discharging. Due to the non-linear characteristics of charging and battery degradation, we consider a mixed integer non-linearly constrained formulation with the aim of scheduling the charging and discharging of EVs to satisfy the following goals: prioritizing charging, reducing charging costs and battery degradation, and limiting the power demand requested to the distribution transformer. The results shows that, when EVs are discharged before charging up within a specific state-of-charge range, degradation can be reduced by 5.3%. All charging requests are completed before the next-day departure time, with 16.35% cost reduction achieved by scheduling charging during lower tariff prices, in addition to prevention of overloading of the distribution transformer.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Global EV Outlook 2020,2020

2. Infrastructure for Charging Electric Vehicles: More Charging Stations but Uneven Deployment Makes Travel across the EU Complicated,2021

3. A review of EVs charging: From the perspective of energy optimization, optimization approaches, and charging techniques

4. A Real-Time Charging Scheme for Demand Response in Electric Vehicle Parking Station

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive Charging Simulation Model for Different Electric Vehicles and Mobility Patterns;Energies;2024-08-14

2. Energy Storage Management In A Microgrid For EV Fast-Charging;2023 15th Seminar on Power Electronics and Control (SEPOC);2023-10-22

3. Novel Scheduling Methodology for Battery Wear Function Considering DoD-SoC Level;2023 13th International Conference on Power, Energy and Electrical Engineering (CPEEE);2023-02-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3