Numerical Simulation of Erosion Characteristics and Residual Life Prediction of Defective Pipelines Based on Extreme Learning Machine

Author:

Wang Qi,Sun ChaoORCID,Li Yuelin,Liu Yuechan

Abstract

Aiming to solve the problem that the residual life of defective elbows is difficult to predict and the prediction accuracy of a traditional extreme learning machine (ELM) is unsatisfactory, a genetic algorithm optimization neural network extreme learning machine method (GA-ELM) that can effectively predict erosion rate and residual life is proposed. In this method, the input weight and hidden layer node threshold of the hidden layer node is mapped to GA, and the input weight and threshold of the ELM network error is selected by GA, which improves the generalization performance of the ELM. Firstly, the effects of solid particle velocity, particle size, and mass flow rate on the erosion of elbow are studied, and the erosion rates under the conditions of point erosion defect, groove defect, and double groove erosion defect are calculated. On this basis, the optimized GA-ELM network model is used to predict the residual life of the pipelines and then compared with the traditional ELM network model. The results show that the maximum erosion rate of defect free elbow is linearly correlated with solid particle velocity, particle size, and mass flow rate; The maximum erosion rate of defective bend is higher than that of nondefective bends, and the maximum erosion rate of defective bend is linearly related to mass flow rate, but nonlinear to solid particle flow rate and particle size; the GA-ELM model can effectively predict the erosion residual life of a defective elbow. The prediction accuracy and generalization ability of the GA-ELM model are better than those of the traditional ELM model.

Funder

Natural Science Foundation of Heilongjiang Province

National Natural Science Foundation of China Youth Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Risk assessment of oil and gas submarine pipeline;Zhao;Oil Gas Storage Transp.,2007

2. Ecological risk and Preventive Countermeasures of oil spill from submarine oil pipeline;Zeng;Ocean Dev. Manag.,2007

3. Experimental and Numerical Simulation Study on Erosion Wear of Petrochemical Pipeline;Li,2017

4. Research progress of solid particle erosion theory and experiment;Cao;Oil Gas Storage Transp.,2019

5. Erosion Analysis and Experimental Study of Bend Section of Submarine Pipeline;Wen,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3