Cordycepin Inhibits Growth and Metastasis Formation of MDA-MB-231 Xenografts in Nude Mice by Modulating the Hedgehog Pathway

Author:

Wu Wenya,Li Xiaomin,Qi Meng,Hu Xin,Cao Fenghua,Wu Xiaoping,Fu Junsheng

Abstract

We previously found that cordycepin inhibits the growth and metastasis formation of MDA-MB-231 cells through the Hedgehog pathway but has not validated this in vivo. In this study, we confirmed cordycepin’s anti-triple-negative breast cancer (TNBC) effect in nude mice and documented its mechanism. We found that cordycepin reduced the volume and weight of MDA-MB-231 xenografts and affected the expression of proliferation-, apoptosis-, epithelial–mesenchymal transition-, and matrix metalloproteinase-related proteins without side effects. RNA sequencing screening, pathway enrichment, and the protein network interaction analysis revealed enriched pathways and targets mainly concentrated on the Hedgehog pathway and its core components of SHH and GLI2. This indicates that the Hedgehog pathway plays a central role in the cordycepin-mediated regulation of growth and metastasis formation in TNBC. The database analysis of the Hedgehog pathway markers (SHH, PTCH1, SMO, GLI1, and GLI2) revealed that the Hedgehog pathway is activated in breast cancer tissues, and its high expression is not conducive to a patient’s survival. Finally, we verified that cordycepin effectively inhibited the Hedgehog pathway in TNBC through Western blotting and immunohistochemistry. This study found that cordycepin could regulate the growth and metastasis formation of TNBC through the Hedgehog pathway in vivo, which provides new insights for targeting and treating breast cancer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3