Therapeutic Potential and Mechanisms of Novel Simple O-Substituted Isoflavones against Cerebral Ischemia Reperfusion

Author:

Yang Shu-ErORCID,Lien Jin-CherngORCID,Tsai Chia-Wen,Wu Chi-ReiORCID

Abstract

Isoflavones have been widely studied and have attracted extensive attention in fields ranging from chemotaxonomy and plant physiology to human nutrition and medicine. Isoflavones are often divided into three subgroups: simple O-substituted derivatives, prenylated derivatives, and glycosides. Simple O-substituted isoflavones and their glycosides, such as daidzein (daidzin), genistein (genistin), glycitein (glycitin), biochanin A (astroside), and formononetin (ononin), are the most common ingredients in legumes and are considered as phytoestrogens for daily dietary hormone replacement therapy due to their structural similarity to 17-β-estradiol. On the basis of the known estrogen-like potency, these above isoflavones possess multiple pharmacological activities such as antioxidant, anti-inflammatory, anticancer, anti-angiogenetic, hepatoprotective, antidiabetic, antilipidemic, anti-osteoporotic, and neuroprotective activities. However, there are very few review studies on the protective effects of these novel isoflavones and their related compounds in cerebral ischemia reperfusion. This review primarily focuses on the biosynthesis, metabolism, and neuroprotective mechanism of these aforementioned novel isoflavones in cerebral ischemia reperfusion. From these published works in in vitro and in vivo studies, simple O-substituted isoflavones could serve as promising therapeutic compounds for the prevention and treatment of cerebral ischemia reperfusion via their estrogenic receptor properties and neuron-modulatory, antioxidant, anti-inflammatory, and anti-apoptotic effects. The detailed mechanism of the protective effects of simple O-substituted isoflavones against cerebral ischemia reperfusion might be related to the PI3K/AKT/ERK/mTOR or GSK-3β pathway, eNOS/Keap1/Nrf-2/HO-1 pathway, TLRs/TIRAP/MyD88/NFκ-B pathway, and Bcl-2-regulated anti-apoptotic pathway. However, clinical trials are needed to verify their potential on cerebral ischemia reperfusion because past studies were conducted with rodents and prophylactic administration.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3