Molecular Biosimilarity—An AI-Driven Paradigm Shift

Author:

Niazi Sarfaraz K.ORCID

Abstract

Scientific, technical, and bioinformatics advances have made it possible to establish analytics-based molecular biosimilarity for the approval of biosimilars. If the molecular structure is identical and other product- and process-related attributes are comparable within the testing limits, then a biosimilar candidate will have the same safety and efficacy as its reference product. Classical testing in animals and patients is much less sensitive in terms of identifying clinically meaningful differences, as is reported in the literature. The recent artificial intelligence (AI)-based protein structure prediction model, AlphaFold-2, has confirmed that the primary structure of proteins always determines their 3D structure; thus, we can deduce that a biosimilar with an identical primary structure will have the same efficacy and safety. Further confirmation of the thesis has been established using technologies that are now much more sensitive. For example, mass spectrometry (MS) is thousands of times more sensitive and accurate when compared to any form of biological testing. While regulatory agencies have begun waiving animal testing and, in some cases, clinical efficacy testing, the removal of clinical pharmacology profiling brings with it a dramatic paradigm shift, reducing development costs without compromising safety or efficacy. A list of 160+ products that are ready to enter as biosimilars has been shared. Major actions from regulatory agencies and developers are required to facilitate this paradigm shift.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference78 articles.

1. The Structure of Scientific Revolutions;Kuhn,1962

2. Between a chicken and a grape: estimating the number of human genes

3. The Protein Puzzle, Biology and Medicine Cell Research. Max Planck Research 3/17: 54–59 https://www.mpg.de/11447687/W003_Biology_medicine_054-059.pdf

4. Principles that Govern the Folding of Protein Chains

5. The microbiome analysis resource in 2020;Mitchell;Nucleic Acids Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3