Coevolution of Rumen Epithelial circRNAs with Their Microbiota and Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep

Author:

Guo Xinyu,Sha Yuzhu,Pu Xiaoning,Xu Ying,Yao Liangwei,Liu XiuORCID,He Yanyu,Hu Jiang,Wang JiqingORCID,Li ShaobinORCID,Chen Guoshun

Abstract

This study explores the effects of the coevolution of the host genome (the first genome) and gut microbiome (the second genome) on nutrition stress in Tibetan sheep during the cold season. The rumen epithelial tissue of six Tibetan sheep (Oula-type) was collected as experimental samples during the cold and warm seasons and the study lasted for half a year. The cDNA library was constructed and subjected to high-throughput sequencing. The circRNAs with significant differential expression were identified through bioinformatics analysis and functional prediction, and verified by real-time quantitative PCR (qRT-PCR). The results showed that a total of 56 differentially expressed (DE) circRNAs of rumen epithelial tissue were identified using RNA-seq technology, among which 29 were significantly upregulated in the cold season. The circRNA-miRNA regulatory network showed that DE circRNAs promoted the adaptation of Tibetan sheep in the cold season by targeting miR-150 and oar-miR-370-3p. The results of correlation analysis among circRNAs, microbiota, and metabolites showed that the circRNA NC_040275.1:28680890|28683112 had a very significant positive correlation with acetate, propionate, butyrate, and total volatile fatty acid (VFA) (p < 0.01), and had a significant positive correlation with Ruminococcus-1 (p < 0.05). In addition, circRNA NC_040256.1:78451819|78454934 and metabolites were enriched in the same KEGG pathway biosynthesis of amino acids (ko01230). In conclusion, the host genome and rumen microbiome of Tibetan sheep co-encoded a certain glycoside hydrolase (β-glucosidase) and coevolved efficient VFA transport functions and amino acid anabolic processes; thus, helping Tibetan sheep adapt to nutrient stress in the cold season in high-altitude areas.

Funder

Liu Xiu

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3