Abstract
Insect chemosensory systems, such as smell and taste, are mediated by chemosensory receptor and non-receptor protein families. In the last decade, many studies have focused on discovering these families in Tephritidae species of agricultural importance. However, to date, there is no information on the Mexican fruit fly Anastrepha ludens Loew, a priority pest of quarantine importance in Mexico and other countries. This work represents the first effort to identify, classify and characterize the six chemosensory gene families by analyzing two head transcriptomes of sexually immature and mature adults of A. ludens from laboratory-reared and wild populations, respectively. We identified 120 chemosensory genes encoding 31 Odorant-Binding Proteins (OBPs), 5 Chemosensory Proteins (CSPs), 2 Sensory Neuron Membrane Proteins (SNMPs), 42 Odorant Receptors (ORs), 17 Ionotropic Receptors (IRs), and 23 Gustatory Receptors (GRs). The 120 described chemosensory proteins of the Mexican fruit fly significantly contribute to the genetic databases of insects, particularly dipterans. Except for some OBPs, this work reports for the first time the repertoire of olfactory proteins for one species of the genus Anastrepha, which provides a further basis for studying the olfactory system in the family Tephritidae, one of the most important for its economic and social impact worldwide.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献