Whole-Genome Metalloproteases in the Wheat Sharp Eyespot Pathogen Rhizoctonia cerealis and a Role in Fungal Virulence

Author:

Guo Feilong,Pan Lijun,Liu Hongwei,Lv Liangjie,Chen Xiyong,Liu Yuping,Li Hui,Ye WenwuORCID,Zhang ZengyanORCID

Abstract

Rhizoctonia cerealis is the causal agent of sharp eyespot, a devastating disease of cereal crops including wheat. Several metalloproteases have been implicated in pathogenic virulence, but little is known about whole-genome metalloproteases in R. cerealis. In this study, a total of 116 metalloproteases-encoding genes were identified and characterized from the R. cerealis Rc207 genome. The gene expression profiles and phylogenetic relationship of 11 MEP36/fungalysin metalloproteases were examined during the fungal infection to wheat, and function of an upregulated secretory MEP36 named RcFL1 was validated. Of 11 MEP36 family metalloproteases, ten, except RcFL5, were predicted to be secreted proteins and nine encoding genes, but not RcFL5 and RcFL2, were expressed during the R. cerealis infection process. Phylogenetic analysis suggested that MEP36 metalloproteases in R. cerealis were closely related to those of Rhizoctonia solani but were remote to those of Bipolaris sorokiniana, Fusarium graminearum, F. pseudograminearum, and Pyricularia oryzae. Expression of RcFL1 was significantly upregulated during the infection process and induced plant cell death in wheat to promote the virulence of the pathogen. The MEP36 domain was necessary for the activities of RcFL1. Furthermore, RcFL1 could repress the expression of wheat genes coding for the chitin elicitor receptor kinase TaCERK1 and chitinases. These results suggest that this MEP36 metalloprotease RcFL1 may function as a virulence factor of R. cerealis through inhibiting host chitin-triggered immunity and chitinases. This study provides insights on pathogenic mechanisms of R. cerealis. RcFL1 likely is an important gene resource for improving resistance of wheat to R. cerealis through host-induced gene silencing strategy.

Funder

Key Sci-Tech

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3