Oxidation of p-[125I]Iodobenzoic Acid and p-[211At]Astatobenzoic Acid Derivatives and Evaluation In Vivo

Author:

Li Yawen,Chyan Ming-Kuan,Hamlin Donald K.,Nguyen HollyORCID,Corey EvaORCID,Wilbur D. Scott

Abstract

The alpha particle-emitting radionuclide astatine-211 (211At) is of interest for targeted radiotherapy; however, low in vivo stability of many 211At-labeled cancer-targeting molecules has limited its potential. As an alternative labeling method, we evaluated whether a specific type of astatinated aryl compound that has the At atom in a higher oxidation state might be stable to in vivo deastatination. In the research effort, para-iodobenzoic acid methyl ester and dPEG4-amino acid methyl ester derivatives were prepared as HPLC standards. The corresponding para-stannylbenzoic acid derivatives were also prepared and labeled with 125I and 211At. Oxidization of the [125I]iodo- and [211At]astato-benzamidyl-dPEG4-acid methyl ester derivatives provided materials for in vivo evaluation. A biodistribution was conducted in mice with coinjected oxidized 125I- and 211At-labeled compounds. The oxidized radioiodinated derivative was stable to in vivo deiodination, but unfortunately the oxidized [211At]astatinated benzamide derivative was found to be unstable under the conditions of isolation by radio-HPLC (post animal injection). Another biodistribution study in mice evaluated the tissue concentrations of coinjected [211At]NaAtO3 and [125I]NaIO3. Comparison of the tissue concentrations of the isolated material from the oxidized [211At]benzamide derivative with those of [211At]astatate indicated the species obtained after isolation was likely [211At]astatate.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3