Abstract
Rheumatoid arthritis is an autoimmune disease that affects joints, leading to swelling, inflammation, and dysfunction in the joints. Recently, research efforts have been focused on finding novel curative approaches for rheumatoid arthritis, as current therapies are associated with adverse effects. Here, we examined the effectiveness of dabigatran, the antithrombotic agent, in treating complete Freund’s adjuvant (CFA)-induced arthritis in rats. Subcutaneous injection of a single 0.3 mL dosage of CFA into the rat’s hind leg planter surface resulted in articular surface deformities, reduced cartilage thickness, loss of intercellular matrix, and inflammatory cell infiltration. There were also increased levels of the Anti-cyclic citrullinated peptide antibody (ACPA), oxidative stress, and tissue Receptor activator of nuclear factor–kappa B ligand (RANKL). Proteins of the kallikrein-kinin system (KKS) were also elevated. The inhibitory effects of dabigatran on thrombin led to a subsequent inhibition of KKS and reduced Toll-like receptor 4 (TLR4) expression. These effects also decreased RANKL levels and showed anti-inflammatory and antioxidant effects. Therefore, dabigatran could be a novel therapeutic strategy for arthritis.
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献