The TGF-β/SMAD Signaling Pathway Prevents Follicular Atresia by Upregulating MORC2

Author:

Liu Jiying,Qi Nannan,Xing Wenwen,Li Mengxuan,Qian Yonghang,Luo GangORCID,Yu Shali

Abstract

In mammals, female fertility is determined by the outcome of follicular development (ovulation or atresia). The TGF-β/SMAD signaling pathway is an important regulator of this outcome. However, the molecular mechanism by which the TGF-β/SMAD signaling pathway regulates porcine follicular atresia has not been fully elucidated. Microrchidia family CW-type zinc finger 2 (MORC2) is anovel epigenetic regulatory protein widely expressed in plants, nematodes, and mammals. Our previous studies showed that MORC2 is a potential downstream target gene of the TGF-β/SMAD signaling pathway. However, the role of MORC2 in porcine follicular atresia is unknown. To investigate this, qRT-PCR, western blotting, and TdT-mediated dUTP nick-end labeling were performed. Additionally, the luciferase activity assay was conductedto confirm that the TGF-β/SMAD signaling pathway regulates MORC2. Our results demonstrate that MORC2 is animportant anti-apoptotic molecule that prevents porcine follicular atresia via a pathway involving mitochondrial apoptosis, not DNA repair. Notably, this studyrevealsthat the TGF-β/SMAD signaling pathway inhibits porcine granulosa cell apoptosis by up-regulating MORC2. The transcription factor SMAD4 regulated the expression of MORC2 by binding to its promoter. Our results will help to reveal the mechanism underlying porcine follicular atresia and improve the reproductive efficiency of sows.

Funder

National Natural Science Foundation of China

the Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3