Abstract
We aimed to elucidate the physiological and biochemical mechanism by which exogenous hydrogen peroxide (H2O2) alleviates salt stress toxicity in Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Tartary buckwheat “Chuanqiao-2” under 150 mmol·L−1 salt (NaCl) stress was treated with 5 or 10 mmol·L−1 H2O2, and seedling growth, physiology and biochemistry, and related gene expression were studied. Treatment with 5 mmol·L−1 H2O2 significantly increased plant height (PH), fresh and dry weights of shoots (SFWs/SDWs) and roots (RFWs/RDWs), leaf length (LL) and area (LA), and relative water content (LRWC); increased chlorophyll a (Chl a) and b (Chl b) contents; improved fluorescence parameters; enhanced antioxidant enzyme activity and content; and reduced malondialdehyde (MDA) content. Expressions of all stress-related and enzyme-related genes were up-regulated. The F3′H gene (flavonoid synthesis pathway) exhibited similar up-regulation under 10 mmol·L−1 H2O2 treatment. Correlation and principal component analyses showed that 5 mmol·L−1 H2O2 could significantly alleviate the toxic effect of salt stress on Tartary buckwheat. Our results show that exogenous 5 mmol·L−1 H2O2 can alleviate the inhibitory or toxic effects of 150 mmol·L−1 NaCl stress on Tartary buckwheat by promoting growth, enhancing photosynthesis, improving enzymatic reactions, reducing membrane lipid peroxidation, and inducing the expression of related genes.
Funder
the National Key R & D Project of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference69 articles.
1. Pretreatment with H2O2 Alleviates the Negative Impacts of NaCl Stress on Seed Germination of Tartary Buckwheat (Fagopyrum tataricum)
2. Collection and taxonomic identification of rare germplasm resources of the genus Buckwheat in six provinces (regions) in western China;Ren;J. Plant Genet. Resour.,2021
3. Research status and prospect of flavonoids in tartary buckwheat;Tan;Food Ind. Sci. Technol.,2012
4. Comparative transcriptomic analysis reveals the regulatory mechanism of the gibberellic acid pathway of Tartary buckwheat (Fagopyrum tataricum (L.) Gaertn.) dwarf mutants
5. Overview of Buckwheat Germplasm Resources;Fan;J. Plant Genet. Resour.,2019
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献