Effects of Various Disinfection Methods on the Material Properties of Silicone Dental Impressions of Different Types and Viscosities

Author:

Wezgowiec JoannaORCID,Paradowska-Stolarz AnnaORCID,Malysa Andrzej,Orzeszek Sylwia,Seweryn Piotr,Wieckiewicz MieszkoORCID

Abstract

There is an ongoing search for novel disinfection techniques that are not only effective, cheap, and convenient, but that also do not have adverse effects on the properties of dental impressions. We compared the effects of various methods (UVC, gaseous ozone, commercial solution, and spray) on the dimensional change, tensile strength, and hardness of silicone impressions. Moreover, as a secondary aim, we performed a statistical comparison of the properties of nondisinfected addition (Panasil Putty Soft, Panasil monophase Medium, Panasil initial contact Light) and condensation silicones (Zetaplus Putty and Oranwash L), as well as a comparison of materials of various viscosities (putty, medium-bodied, and light-bodied). Our results revealed that addition silicones had higher dimensional stability, tensile strength, and Shore A hardness compared to condensation silicones. Both traditional (immersion and spraying) and alternative methods of disinfection (UVC and ozone) had no significant impact on the tensile properties and dimensional stability of the studied silicones; however, they significantly affected the hardness, particularly of Oranwash L. Our study demonstrated that, similarly to standard liquid disinfectants, both UVC and ozone do not strongly affect the material properties of most silicones. However, before recommendation, their usefulness for each individual material should be thoroughly evaluated.

Funder

Wrocław Medical University

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3