Abstract
In this study, we propose tunable pH sensors based on the electric-double-layer transistor (EDLT) with time-dependent sensitivity characteristics. The EDLT is able to modulate the drain current by using the mobile ions inside the electrolytic gate dielectric. This property allows the implementation of a device with sensitivity characteristics that are simply adjusted according to the measurement time. An extended gate-type, ion-sensitive, field-effect transistor consisting of a chitosan/Ta2O5 hybrid dielectric EDLT transducer, and an SnO2 sensing membrane, were fabricated to evaluate the sensing behavior at different buffer pH levels. As a result, we were able to achieve tunable sensitivity by only adjusting the measurement time by using a single EDLT and without additional gate electrodes. In addition, to demonstrate the unique sensing behavior of the time-dependent tunable pH sensors based on organic–inorganic hybrid EDLT, comparative sensors consisting of a normal FET with a SiO2 gate dielectric were prepared. It was found that the proposed pH sensors exhibit repeatable and stable sensing operations with drain current deviations <1%. Therefore, pH sensors using a chitosan electrolytic EDLT are suitable for biosensor platforms, possessing tunable sensitivity and high-reliability characteristics.
Funder
National Research Foundation of Korea
Korea Institute for Advancement of Technology
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献